STERIC EFFECTS IN NEOPHYLTIN(IV) CHEMISTRY

THOMAS P. LOCKHART *

Inorganic Materials Division, National Bureau of Standards, Gaithersburg, MD 20899 (U.S.A.) (Received November 5th, 1984)

Summary

The stability and self-association in solution of $(neophyl_3Sn)_2O$, $neophyl_3SnOH$, and $(neophyl_3Sn)_2CO_3$ $(neophyl = C_6H_5(CH_3)_2CCH_2)$ have been examined by ¹¹⁹Sn NMR. The presence of Sn,Sn spin coupling through oxygen (${}^2J({}^{119}Sn,{}^{117}Sn)$) has been used to distinguish between the distannoxane and stannol. Facile dehydration prevents the isolation of neophyl_3SnOH from solution at room temperature and the equilibrium constant for $H_2O + (neophyl_3Sn)_2O \Rightarrow 2neophyl_3SnOH$ is 0.3 at 304 K. These observations are in sharp contrast with a previous report that the sterically bulky neophyl ligands render neophyl_3SnOH stable toward dehydration. $|{}^{1}J({}^{119}Sn,{}^{13}C)|$ observed for neophyl_3SnOH and $(neophyl_3Sn)_2CO_3$ indicates that these compounds, unlike their n-alkyl-substituted homologues, are unassociated in solution, a result attributed to the steric bulk of the neophyl ligand.

Introduction

The potent but selective biocidal properties of certain organotin compounds have led to their wide use in agriculture and commerce [1-3]. Among these are several hexaorganodistannoxanes, $(R_3Sn)_2O$, and triorganostannols, R_3SnOH , which are interconverted according to eq. 1.

$$(neophyl_3Sn)_2O + H_2O \stackrel{K_{eq}}{\rightleftharpoons} 2 neophyl_3SnOH$$
(1)

We have recently observed [4] that the presence of Sn,Sn spin coupling $({}^{2}J({}^{119}\text{Sn},{}^{117}\text{Sn}))$ through oxygen in the ${}^{119}\text{Sn}$ solution NMR of hexaorganodistannoxanes is a useful diagnostic for the presence of the Sn-O-Sn linkage; the magnitude of the spin coupling is extremely sensitive to substituent and solvent effects and appears to be directly related to the size of the Sn-O-Sn bond angle [4].

^{*} National Research Council-National Bureau of Standards Research Associate, 1983-1985. On leave from General Electric Corporate Research and Development, Schenectady, NY, 12301 (U.S.A.)

We were particularly interested in examining the ¹¹⁹Sn NMR of hexaneophyldistannoxane, (neophyl₃Sn)₂O (neophyl = $C_6H_5(CH_3)_2CCH_2$), an organotin used in agriculture [2], in order to determine the influence of the bulky neophyl ligand on the Sn,Sn spin coupling. In the course of our investigation we have found several marked inconsistencies between its properties and behavior in our hands and those which have been reported in the literature [5–8]. The ¹¹⁹Sn NMR studies reported here provide insight into this problem and the general influence of the neophyl ligand on the properties of (neophyl₃Sn)₂O, trineophylstannol (neophyl₃SnOH), and bis(trineophyltin) carbonate ((neophyl₃Sn)₂CO₃).

Results

TABLE 1

¹¹⁹Sn NMR data for (neophyl₃Sn)₂O, neophyl₃SnOH, and (neophyl₃Sn)₂CO₃ are collected in Table 1; ¹¹⁹Sn NMR spectra obtained in a (neophyl₃Sn)₂O hydrolysis experiment are shown in Fig. 1. Figure 2 shows ¹¹⁹Sn spin coupling to ¹¹⁷Sn and ¹³C present in the ¹¹⁹Sn NMR of (neophyl₃Sn)₂CO₃.

Pure (neophyl₃Sn)₂O was obtained by recrystallization from dry hydrocarbon solvent (heptane). ¹¹⁹Sn NMR data for neophyl₃SnOH were obtained with hydrolyzed solutions of the distannoxane. Although reported to be stable with regard to loss of H₂O [5–7], attempts to isolate neophyl₃SnOH by concentration of CDCl₃, benzene, or aqueous acetone solutions of the stannol (under vacuum or N₂ sweep at room temperature) yielded only (neophyl₃Sn)₂O, as determined by m.p. and ¹¹⁹Sn NMR.

The instability of neophyl₃SnOH toward dehydration prevented its isolation and full characterization. Instead, the identification of neophyl₃SnOH rests on the following observations: (1) The stannol was interconverted with the distannoxane several times using the same sample. (2) Narrow distannoxane and stannol resonances were observed simultaneously in the ¹¹⁹Sn NMR of partially hydrolyzed CDCl₃ and benzene solutions of (neophyl₃Sn)₂O (Fig. 1). (3) No Sn,Sn spin coupling was observed in the hydrolysis product, under conditions where ¹J(¹¹⁹Sn,¹³C) was visible. (4) The magnitude of ¹J(¹¹⁹Sn,¹³C) of the hydrolysis

Compound ^b	Solvent	δ (ppm)	$\frac{\omega_{1/2}}{(\text{Hz})}^{c}$	$ ^{2}J(^{119}\text{Sn},^{117}\text{Sn}) $ (Hz)	$ ^{1}J(^{119}\text{Sn},^{13}\text{C}) $ (Hz)
(neophyl ₃ Sn) ₂ O	CDCl ₃	54.8	4	531	363
	C ₆ H ₆	57.7	≤6	533	363
neophyl ₃ SnOH	CDCl ₃	75.9	_4	_	368
	$C_6H_6(0.05 M)$	67.5	5		-
	(ca. 0.2 M)	69.1	65 ^d	-	_
	$(CD_3)_2CO$	69.2	6–11 ^e	-	361±6
$(neophyl_3Sn)_2CO_3$	CDCl	81.5	4	44 ^f	357
	toluene	74.4	≦ 8 ^e	-	367 ± 11

¹¹⁹ Sn	SOLUTION N	NMR DATA	FOR NEO	OPHYLTIN	COMPOUNDS ^a
-------------------	------------	----------	---------	----------	------------------------

^{*a*} All solutions at 304 K. Digital resolution $\leq 2.5 \text{ Hz/pt.}$, conc. < 0.2 M or as noted. Me₄Sn internal standard (0 ppm). ^{*b*} Neophyl = C₆H₅(CH₃)₂CCH₂. ^{*c*} $\omega_{1/2}$ = width at half-height. ^{*d*} Broad resonance may be due either to presence of excess H₂O in solution or to self-association at ca. 0.2 *M*. ^{*e*} Digital resolution 5.5 Hz/pt. ^{*f*} |⁴J(¹¹⁹Sn,¹¹⁷Sn)].

Fig. 1. ¹¹⁹Sn NMR of the hydrolysis of (neophyl₃Sn)₂O in CDCl₃ solution at 304 K. (a) Pure (99%) (neophyl₃Sn)₂O before hydrolysis; ¹³C and ¹¹⁷Sn satellites (¹J(¹¹⁹Sn,¹³C), ²J(¹¹⁹Sn,¹¹⁷Sn)) are labelled. (b) Both neophyl₃SnOH and (neophyl₃Sn)₂O are present after addition of H₂O to the NMR solution; ¹³C satellites (¹J(¹¹⁹Sn,¹³C)) in the hydrolysis product are labelled.

product, 368 Hz in CDCl₃, indicates that it is an unassociated species with tetracoordinated tin [9,10]. This rules out the possibility that a distannoxane-H₂O complex might account for the new resonance. (5) The ¹¹⁹Sn chemical shift of the hydrolysis product moved 8.4 ppm to lower field on going from dilute benzene to CDCl₃ solution, consistent with deshielding of Sn owing to hydrogen bonding of the stannol with the CDCl₃ solvent.

The equilibrium constant, K_{eq} , for hydrolysis of $(neophyl_3Sn)_2O$ in CDCl₃ solution (eq. 1) is 0.3 at 304 K and was determined by combining a known

Fig. 2. ¹¹⁹Sn NMR of $(neophyl_3Sn)_2CO_3$ in CDCl₃ solution at 304 K. ¹³C and ¹¹⁷Sn satellites $({}^{1}J({}^{119}Sn, {}^{13}C), {}^{4}J({}^{119}Sn, {}^{117}Sn))$ are labelled. Spinning side band (sb) indicated.

concentration of the distannoxane with a known amount of H_2O . Care was taken that the concentration of H_2O employed was lower than its solubility limit [11].

 $(Neophyl_3Sn)_2CO_3$ was obtained by the exposure of toluene or $CDCl_3$ solutions of the distannoxane or stannol to CO_2 gas for several days. This compound was very sensitive to heat, rapidly decarboxylating in solution at 50°C under a stream of N₂. During routine m.p. analyses the white microcrystalline carbonate turned opaque at 50–55°C, presumably owing to loss of CO_2 . The opaque solid melted at about 140°C, very near the melting point of $(neophyl_3Sn)_2O$. Infrared spectroscopy was particularly diagnostic for the presence of the carbonate linkage [12].

Discussion

Neophyl-substituted tin compounds were first prepared in 1966 by Reichle [5], who used IR, NMR, and Mössbauer spectroscopy to examine the influence of the sterically bulky neophyl group on the chemistry of its triorganotin(IV) derivatives. Among the derivatives he examined was neophyl₃SnOH, prepared by the reaction of neophyl₃SnCl with sodium hydroxide in aqueous ethanol. The stannol structure was assigned on the basis of a hydroxyl stretching mode in the IR of the melt and on elemental analysis data. Unsuccessful attempts to dehydrate this compound on heating up to 350°C led the author to conclude that the steric bulk of the neophyl ligand confers extraordinary stability on neophyl₃SnOH, a conclusion which has been cited elsewhere in the organotin literature [6,7].

Ironically, shortly after the synthesis of neophyl₃SnOH was reported, Zimmer, Homberg, and Jawayant reported [13] the isolation of (neophyl₃Sn)₂O by a similar route. The product had the same melting point as the purported stannol (143–144°C vs. 145–146°C) [5], but no hydroxyl function, by IR, and gave a good elemental analysis for the distannoxane. The authors pointed out the apparent similarity of the The large ¹¹⁹Sn,¹¹⁷Sn coupling constants observed in the ¹¹⁹Sn NMR of hexaorganodistannoxanes [4] provide a convenient means for distinguishing between neophyl₃SnOH and (neophyl₃Sn)₂O in solution. Using ¹¹⁹Sn NMR we have found that the equilibrium constant for formation of the stannol in CDCl₃ is 0.3 at 304 K, which indicates that the distannoxane is the thermodynamically preferred product. Further, efforts to isolate neophyl₃SnOH at room temperature from solutions in which it was known to be present in quantitative yields were unsuccessful. In combination, these observations indicate a facile interconversion of (neophyl₃Sn)₂O and neophyl₃SnOH in solution at room temperature and demonstrate the reported [5] synthesis of the stannol to be in error. The misidentification of (neophyl₃Sn)₂O provides a simple explanation for the reported [5] resistance of the stannol to dehydration, even at high temperature.

Our investigation of the hydrolysis chemistry of $(neophyl_3Sn)_2O$ led us to another disagreement with the neophyltin literature. In 1972 McFarlane and Wood [14] reported the ¹¹⁹Sn chemical shift of neophyl₃SnOH (161 ppm, apparently in CDCl₃ solution [14b]) which was determined by a double resonance technique. The authors noted the "anomalous", large positive value of the chemical shift of the stannol relative to the other trineophyltin compounds they examined. The reported chemical shift is in sharp disagreement with that of the product we identify as neophyl₃SnOH (75.9 ppm in CDCl₃). Based on our experimental observations, and our use of a direct measurement technique, we believe the higher value to be in error.

An effort was made to determine the source of the discrepancy between these two chemical shifts for neophyl₃SnOH. First, neophyl₃SnCl was prepared from the distannoxane used in this study. The agreement of the ¹¹⁹Sn chemical shift of this compound (117.7 ppm in dilute CDCl₃ solution) with that reported by McFarlane and Wood (118 ppm) [14] eliminates the possibility that we were examining different organofunctional tin compounds. The general tendency of distannoxanes to react rapidly with CO₂ in the air [7,15] raised the possibility that the earlier NMR study of neophyl₃SnOH may have inadvertantly been carried out on (neophyl₃Sn)₂CO₃. Our synthesis of the carbonate, however, shows this to be an unlikely possibility, given its instability and ¹¹⁹Sn chemical shift (75–80 ppm, see Table 1).

Examination of the ¹¹⁹Sn NMR spectra of neophyl₃SnOH, $(neophyl_3Sn)_2CO_3$, and $(neophyl_3Sn)_2O$ reveals clear examples of the steric influence of the neophyl group on their behavior in solution. Thus, whereas IR studies [16] indicated that trimethylstannol is associated (dimeric) in solution (A), neophyl₃SnOH is unassoci-

ated in CDCl₃ and acetone solution (|¹J(¹¹⁹Sn,¹³C)| 368, 361 Hz, respectively; see

Table 1). This difference in behavior presumably reflects steric interference of the neophyl ligands upon close approach of two molecules of neophyl₃SnOH.

The ¹¹⁹Sn NMR spectra of bis(trimethyltin)- and bis(tributyltin)-carbonates have recently been reported [17]. The presence of two broad resonances (+82, -66.7 ppm, line width > 10 ppm) in the ¹¹⁹Sn NMR of the n-butyl compound was interpreted in terms of the formation of an oligomeric or polymeric species (**B**) [17].

In sharp contrast, the ¹¹⁹Sn NMR of $(neophyl_3Sn)_2CO_3$ shows a single, narrow resonance with resolved spin coupling to ¹³C (Fig. 2). The magnitude of ¹J(¹¹⁹Sn,¹³C) 357 Hz, indicates that this carbonate is monomeric in CDCl₃ solution [9,10]. Sn,Sn spin coupling through four bonds, ⁴J(¹¹⁹Sn,¹¹⁷Sn), is also visible in the well-resolved ¹¹⁹Sn NMR spectrum. Few other examples of such long distance coupling of tin nuclei have been reported [18].

The neophyl ligand also has a pronounced influence on the stability of $(neophyl_3Sn)_2CO_3$ relative to other triorganotin carbonates: the neophyltin carbonate loses CO_2 rapidly at 50-55°C, whereas n-alkyl-substituted tin carbonates decompose above 100°C [12,19].

Comparison of $(neophyl_3Sn)_2O$ with other distantoxanes indicates that the neophyl group significantly reduces the influence of solvent on the ¹¹⁹Sn NMR parameters: ²J(¹¹⁹Sn,¹¹⁷Sn) decreases about 75 Hz and ¹¹⁹Sn is deshielded about 7 ppm for n-alkyl-substituted distantoxanes in going from benzene to CDCl₃ solvent [4]; much smaller changes (2 Hz, 3 ppm) are observed for (neophyl₃Sn)₂O. Since the solvent is believed to affect these parameters through interaction with the polar Sn-O-Sn function (i.e., through hydrogen bonding of CDCl₃ to the distantoxane oxygen [4]), this comparison indicates that the neophyl ligand significantly shields the (neophyl₃Sn)₂O oxygen atom from solvent.

Conclusions

The presence of Sn,Sn spin coupling through oxygen, ${}^{2}J({}^{119}Sn,{}^{117}Sn)$, has been used to discriminate between $(neophyl_{3}Sn)_{2}O$ and $neophyl_{3}SnOH$. The steric influence of the neophyl ligand eliminates the self-association of $neophyl_{3}SnOH$ and $(neophyl_{3}Sn)_{2}CO_{3}$ in solution; in fact, these compounds appear to be the only well-established members of their respective classes which are monomeric in solution. The observation that neophyl_{3}SnOH is stable only in the presence of added water, however, requires a correction of the report that the bulky ligand renders neophyl_{3}SnOH extraordinarily resistant to dehydration.

Experimental

Materials. The $(neophyl_3Sn)_2O$ used in this study was generously provided by P.J. Smith of the International Tin Research Institute, Great Britain. The solvents

employed in the synthetic work were of high commercial quality, and were dried over freshly activated 4A molecular sieves. The IR spectrum of $(neophyl_3Sn)_2CO_3$ was obtained with a Perkin-Elmer Model 337 grating infrared spectrometer.

NMR Spectroscopy. Solution NMR experiments were carried out with a Bruker WM 400 spectrometer. The ¹¹⁹Sn NMR spectra were collected with a 90° pulse and 4 s relaxation delay at 149.212 MHz and 304 K. Proton decoupling at 400 MHz was gated on only during data acquisition in order to minimize the negative nuclear Overhauser effect (NOE). Solutions of the neophyltins were examined in 10 mm tubes; with benzene solutions a 5 mm concentric tube insert containing a deuterated lock solvent was used. A small amount of Me₄Sn (<1% v/v) was added as reference (0 ppm). Repeated runs indicated that the uncertainty in the chemical shifts is < 0.1 ppm and in the spin coupling values was approximately equal to the digital resolution. The assignment of ¹¹⁷Sn and ¹³C satellites (natural abundances 1.1, 7.6%, respectively) was based on their intensity relative to the uncoupled central resonance. Varying the relaxation delay from 4 to 8 s produced < 10% change in relative areas of the neophyl₃SnOH and (neophyl₃Sn)₂O ¹¹⁹Sn resonances.

Bis(trineophyltin) carbonate. Following literature procedures [12,17,19], CO₂ gas was bubbled through a toluene solution (10 ml) of $(neophyl_3Sn)_2O$ (0.3 mmol) at 23°C with occasional monitoring of the reaction by ¹¹⁹Sn NMR. After 5 days conversion to the carbonate reached 90%. The product was isolated by slowly concentrating the solution at or below room temperature under a stream of CO₂. The product oil crystallized to a white solid on prolonged standing at room temperature under an atmosphere of CO₂. During routine melting point analysis the clear crystalline solid turned opaque at 50–55°C, evidently owing to the loss of CO₂. ¹¹⁹Sn NMR showed the presence of $(neophyl_3Sn)_2O$ alone after a solution of the carbonate had been evaporated to a white solid under a stream of N₂ at 55°C.

Analysis: IR (thin film of product oil) showed the presence of carbonate frequencies similar in intensity and position to those reported for simple bis(tri-n-al-kyltin) carbonates [12]: 1600, 1350, 1078, 830, 760, 700 cm⁻¹. ¹¹⁹Sn NMR: spectrum shown in Fig. 2, data in the Table 1; the spectrum was scanned from + 200 to -130 ppm but no evidence was found for a second ¹¹⁹Sn resonance (vide supra) [17]. ¹³C NMR (CDCl₃): 151.2 (C=O); 128.3, 125.7, 125.4 (aromatic ¹³C); 37.8 (Sn-¹³C); 37.6 (tert. ¹³C); 32.9 ppm (¹³CH₃); ¹J(¹¹⁹Sn,¹³C) 356 Hz. ¹H NMR (CDCl₃): 6.8-7.1 (m, 5H); 0.96, 0.99 ppm (8H).

Trineophyltin chloride. The method of Reichle [5] for preparing neophyl₃SnBr was used with minor changes: 2 ml aqueous HCl (37%) were added to a saturated solution of $(neophyl_3Sn)_2O$ (ca. 0.5 g) in 10 ml EtOH. After stirring overnight, the solution was heated to 56–60°C for a few hours. The white microcrystalline product was isolated by suction filtration. M.p. of crude product, 113–117°C (lit. [5], 117.5–118.5°C). ¹¹⁹Sn NMR showed a single resonance at 117.7 ppm (lit. [14], 118 ppm).

Hydrolysis reactions of $(neophyl_3Sn)_2O$. The hydrolysis of $(neophyl_3Sn)_2O$ was carried out in CDCl₃, benzene, and acetone solutions (ca. 0.4 *M*) by adding several equivalents of H₂O. ¹¹⁹Sn NMR indicated complete conversion to a single new product (NMR data given in Table 1), but attempts to isolate the product from these solutions were unsuccessful. For example, concentrating the hydrolysis solution under a vacuum at 25–35°C or under a stream of N₂ yielded a white microcrystal-line solid. The m.p. of the solid ranged between 140–146°C (the m.p. of

(neophyl₃Sn)₂O [13]) depending on the presence of residual solvent. Attempted recrystallization of the product from a concentrated aqueous acetone solution (ca. 1/1 v/v) again gave the distannoxane. The ¹¹⁹Sn NMR spectra of the hydrolysis solutions were recorded up to +220 ppm but the low-field resonance reported [14] was not observed.

The K_{eq} determination was carried out with a solution of 0.23 g (0.22 mmol) (neophyl₃Sn)₂O in 2.5 ml CDCl₃. After recording the preliminary spectrum, 1.3 μ l (0.072 mmol) H₂O was added by syringe. The ratio of the areas of the distannoxane and stannol resonances were determined several times over 24 h and stabilized at a distannoxane/stannol ratio of 3/1. Correcting for the relative number of Sn atoms per molecule of stannol and distannoxane, and setting the moles of H₂O reacted equal to the amount of distannoxane converted gave $K_{eq} = 0.27$. In view of the small amount of materials involved and the nature of the measurement, the value $K_{eq} = 0.3$ is preferred.

Acknowledgements

I would like to acknowledge W.F. Manders for helpful discussions and for assistance in carrying out the ¹¹⁹Sn NMR measurements, and F.E. Brinckman for his enthusiastic support.

References

- 1 J.G.A. Luijten, in A.K. Sawyer (Ed.) Organotin Compounds, Marcel Dekker, New York, 1971, Vol. III, Ch. 12, pp. 940-961.
- 2 A.G. Davies and P.J. Smith in G. Wilkinson, F.G.A. Stone, and E.W. Abel, (Eds.); Comprehensive Organometallic Chemistry, Pergamon, New York, 1982; Vol. 2, pp. 608-614.
- 3 R.C. Poller, The Chemistry of Organotin Compounds, Academic Press, New York, 1970; Ch. 14.
- 4 T.P. Lockhart, W.F. Manders and F.E. Brinckman, J. Organomet. Chem., 286 (1985) 153.
- 5 W.T. Reichle, Inorg. Chem., 5 (1966) 87.
- 6 Ref. 2, p. 574.
- 7 J.M. Brown, A.C. Chapman, R. Harper, D.J. Mowthorpe, A.G. Davies, and P.J. Smith, J. Chem. Soc., Dalton Trans., (1972) 338.
- 8 A.J. Bloodworth, and A.G. Davies, in ref. 2, Vol. I, Ch. 4, p. 192-197.
- 9 T.N. Mitchell, J. Organomet. Chem., 59 (1973) 189.
- 10 Ref. 2, p. 529, 530.
- 11 The solubility of H₂O in CHCl₃ is 0.081 *M* at 20°C; C. Marsden and S. Mann, Solvents Guide, 2nd ed., Cleaver-Hume, London, 1963.
- 12 H. Sato, Bull. Chem. Soc. Japan, 40 (1967) 410.
- 13 H. Zimmer, O.A. Homberg, and M. Jayawant, J. Org. Chem., 31 (1966) 3857.
- 14 (a) W. McFarlane and R.J. Wood, J. Organomet. Chem., 40 (1972) C17; (b) Also cited in P.J. Smith and A.P. Tupciauskas, Annu. Rep. NMR Spectroscopy, 8 (1978) 292.
- 15 Ref. 2, p. 572.
- 16 R. Okawara and K. Yasuda, J. Organomet. Chem., 1 (1964) 356.
- 17 S.J. Blunden, R. Hill, and J.N.R. Ruddick, J. Organomet. Chem., 267 (1984) C5.
- B. Wrackmeyer, Z. Naturforsch., B., 33 (1978) 385; B. Wrackmeyer, J. Organomet. Chem., 145 (1978) 183.
- 19 A.J. Bloodworth, A.G. Davies and S.C. Vasishtha, J. Chem. Soc. C, (1967) 1309; J.J. Zuckerman and Y.K. Ho, Inorg. Chem., 12 (1973) 1552.